SOFC Seals: Materials Status

SECA Core Technology Program – SOFC Seal Meeting July 8, 2003

Sandia National Laboratory, Albuquerque, NM

Jeff Stevenson

Pacific Northwest National Laboratory

Richland, WA

Pacific Northwest National Laboratory U.S. Department of Energy 1

Functions

•SOFC seals prevent mixing of fuel and oxidant within stack

•SOFC seals prevent leaking of fuel and oxidant from stack

•SOFC seals electrically isolate cells in stack

•SOFC seals may provide mechanical bonding of components

Requirements

While fulfilling the above functions, seal materials must remain:
structurally stable
chemically compatible with other stack components
inexpensive

Pacific Northwest National Laboratory U.S. Department of Energy 2

Battelle

Notes

•Much of SOFC seal work to date is proprietary (design-specific)

•Limited SOFC seal information in open literature

•Planar designs typically require multiple seals per stack "repeat unit"

•Several different types of seal might be used per repeat unit

Metal interconnect **Possible Seals include:** S2 **S**1 S1: Cell to Metal Frame Ceramic spacer S2: Metal Frame to Metal Metal frame Interconnect S3: Frame/Interconnect to Spacer (for electrical S4 (insulation) Metal endplate/ S4: Stack to Base manifold **Manifold Plate**

Seal designs and materials will largely depend on the cell and stack configurations and contacting surfaces / materials

fuel

air

Pacific Northwest National Laboratory U.S. Department of Energy 4

air

fuel

Basic Sealing Approaches

- 1) Rigid, bonded seals
 - Room-temperature analog: Epoxy glue
 - •Materials: Glass, glass-ceramic, braze
- 2) Compressive seals
 - •Room-temperature analog: Rubber O-ring, gasket
 - Materials: Mica-based
- 3) Compliant, bonded seals
 - Room-temperature analog: Rubber glue
 - •Materials: ??

Level of effort, maturity of technology

Basic Sealing Approaches

- 1) Rigid, bonded seals
 - Room-temperature analog: Epoxy glue
 - •Materials: Glass, glass-ceramic, braze
- 2) Compressive seals
 - -Room-temperature analog: Rubber O-ring, gasket
 - -Materials: Micarbased
- 3) Complianti, bonded seals
 - Room-temperature analog: Rubber glue
 - •Meterials: ??

Level of effort, maturity of technology

Rigid, Bonded Seals

Additional Requirements for Rigid, Bonded Seals (typically glass, glass-ceramic)

- Thermal expansion match
 - Ni/YSZ 12 ppm/K
 - 8-YSZ 10 ppm/K
 - Doped Ceria 12-13 ppm/K
 - Doped Lathanum Gallate 11.5 ppm/K
- Sealing temperature
 - Must be ≤ all previous cell/stack fabrication steps
 - Higher than the operational temperature
- Good wetting during sealing

Glass and Glass-ceramic seals: Status

"Standard approach" to sealing planar stacks

Successfully used to initially seal stacks; limited success reported in terms of thermal cycling and long-term operation

Pros:

- Viscous/wetting behavior of glass facilitates hermetic sealing
- Inexpensive, easy to fabricate (tape casting, slurry dispensing)
- Properties can be tailored (CTE, T_g, T_s)
- Glass-ceramics (vs. glasses) avoid viscous flow during operation and uncontrolled, progressive crystallization during operation

Cons:

- Brittle behavior (glass-ceramics; glasses below T_g)
- Few systems with appropriate CTE (AE-AI-Si-O)
- Chemical interactions w/ adjacent components (e.g. metal interconnects)
- Volatilization of seal constituents (SiO₂, B₂O₃, alkali metals)

Pacific Northwest National Laboratory U.S. Department of Energy 8

Battelle

Potential Glass Systems

- P_2O_5 based glasses
 - Low CTE, low strength
- > B₂O₃ based glasses
 - Volatile, low softening temperatures
- SiO₂ based glasses
 - Best available glass candidate (?)
 - Alkaline earth aluminosilicate glasses
 - High electrical resistivity
 - High thermal expansion (matching other SOFC stack components)
 - Rapid crystallization kinetics

SOFC Glass Seal Studies

SrO-La₂O₃-Al₂O₃-B₂O₃-SiO₂ High B₂O₃, very low softening points K. Ley et al., J. Mater. Res., <u>11</u>, 1489 (1996) BaO-Al₂O₃-B₂O₃-SiO₂-As₂O₃ Volatilization of B₂O₃ and As₂O₃ (pore formation) C. Gunther et al., in Solid Oxide Fuel Cells – V, 746 (1997) Crystallization rate adjustable with MgO additions; interactions with interconnect alloy (MgCr₂O₄)

 K. et al., J. Eur. Cer. Soc., <u>19</u>, 1101 (1999); Proc. 4th European SOFC Forum, 899 (2000)

SOFC Glass Seal Studies

$\blacktriangleright AO-AI_2O_3-B_2O_3-SiO_2 (A = Ba, Ca, Mg)$

• Ba: Higher CTE, lower T_q than Ca, Mg

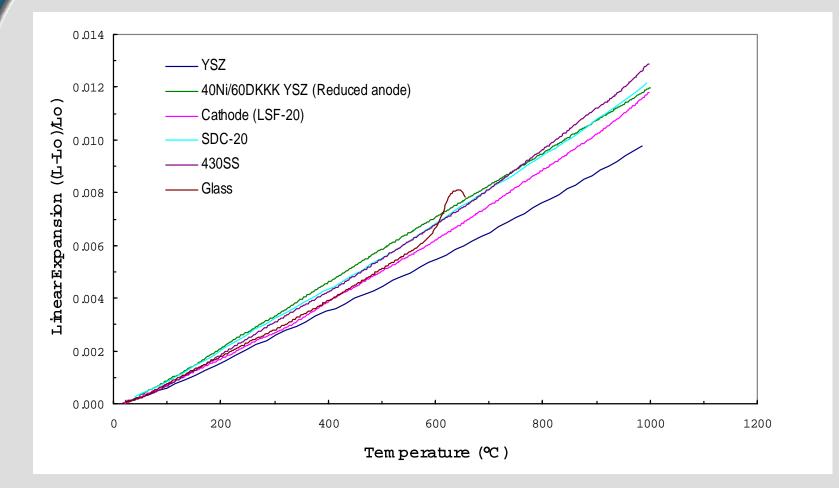
N. Lahl et al., in Solid Oxide Fuel Cells – VI, 1057 (1999)

\blacktriangleright CaO-Al₂O₃-SiO₂

 Primary crystallization product: Wollastonite (CaSiO₃)

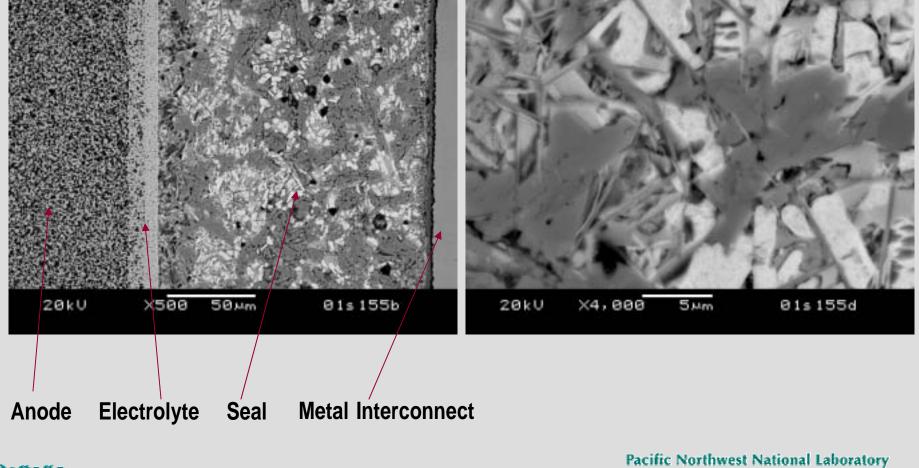
Y. Sakaki et al., in Solid Oxide Fuel Cells – V, 652 (1997)

Note Emphasis on Alkaline Earth Aluminosilicate Glasses


BaO-Al₂O₃-SiO₂ Seals

9.0 Expansion of Crystalline phases 0.7 BaO • 2SiO2 α ≈ 14 0 2BaO · 3SiO2 α ≈ 12.6 0.6 BaO •AI2O3 • 2SiO2 $\alpha \approx 8$ for SiO2 hexagonal and 2.7 for monoclinic #2 end #3 BaO + SiOs - 0.5 BaO 0 2BaO + 3SiO2 0.4 BaO . 25102 0.3 203 0 Ba₂ ð 0.2 0.0 0.1 00 0.3 9.0 50 Þ.0 °. 0. AI2O3 Mol%

PNNL Patents: US 6,430,966; US 6,532,769

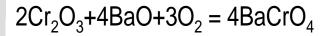

> Pacific Northwest National Laboratory U.S. Department of Energy 12

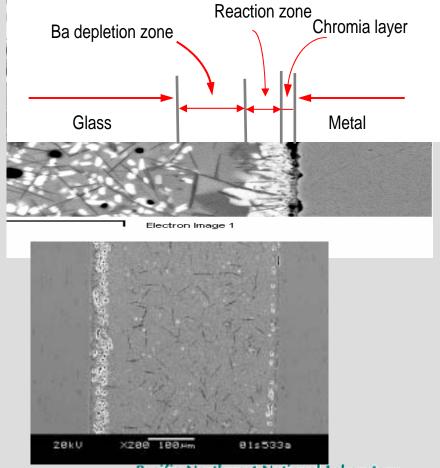
Thermal Expansion of Cell and Stack Materials

Baffelle

Glass G18 After Crystallization

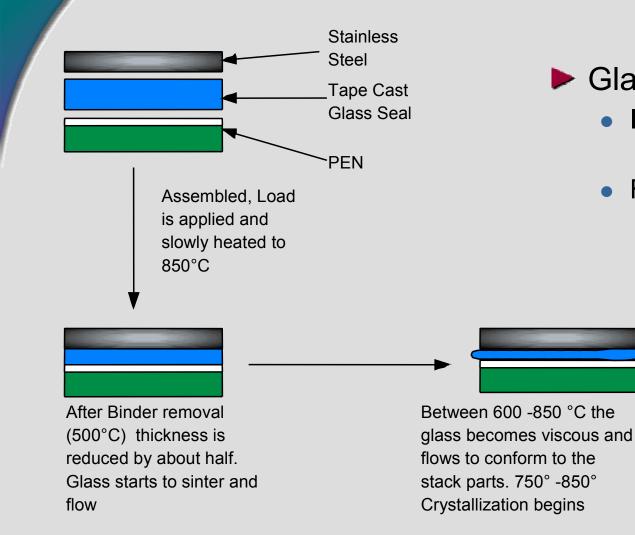
Baffelle


U.S. Department of Energy 14


Glass/Metal Chemical Interactions

Challenges of glass-sealing metal interconnects in SOFC stacks include:

•Formation of interfacial compounds (e.g., barium chromate for barium aluminosilicate sealing glass bonded to chromia forming alloys)


•Development of extensive porosity in glass near glass/alloy interface

Pacific Northwest National Laboratory U.S. Department of Energy 15

Glass Sealing Procedure

Glass Seal

- Initial Thickness
 - ~750 μm
- Final Thickness

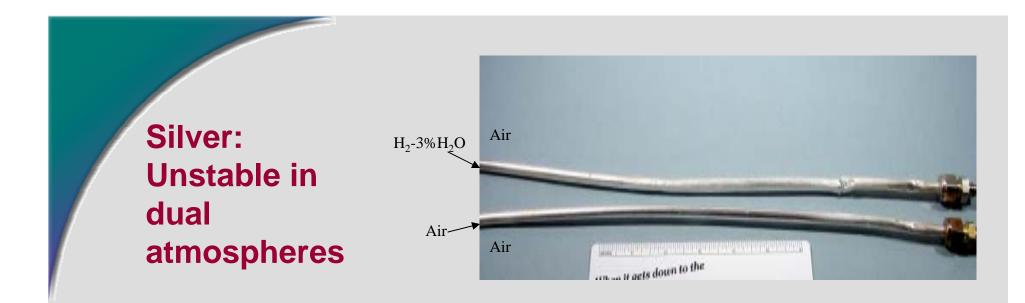
■ ~200 µm

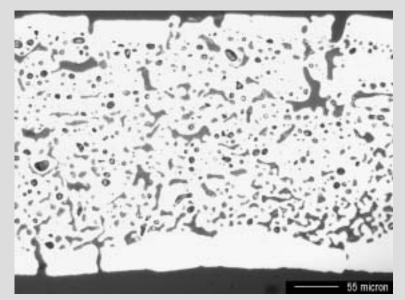
Pacific Northwest National Laboratory U.S. Department of Energy 16

Brazed seals

Potential alternative to glass-based seals

Involves use of molten filler metal which flows and fills gap between components


Pros:


- Wetting behavior of molten metal facilitates hermetic sealing
- Easy to fabricate
- Properties can be tailored (CTE, T_m)

Cons:

- Electrically conductive!
- Few systems compatible with sealing under oxidizing conditions
 - Noble metal brazes expensive
 - Ag relatively inexpensive, but is unstable in dual environment

Exposed to fuel/air environment, 100hrs, 700C

Exposed to air/air environment, 100hrs, 700C Pacific Northwest National Laboratory U.S. Department of Energy 18

Basic Sealing Approaches

- 1) Rigid, bonded seals
 - -Room-temperature analog: Epoxy glue
 - Materials: Glass, glass-ceramic, braze
- 2) Compressive seals
 - •Room-temperature analog: Rubber O-ring, gasket
 - Materials: Mica-based composites
- 3) Compliant, bonded seals
 - Room-temperature analog: Rubber glue
 - •Neteriels: ??

Level of effort, maturity of technology

Compressive seals

Very little reported development work compared to rigid seals

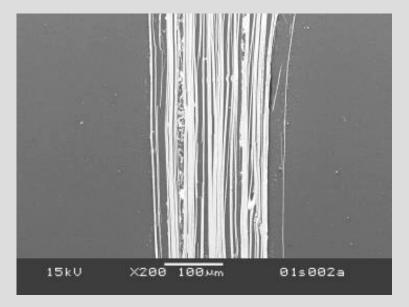
Pros:

- May provide mechanical "de-coupling" of adjacent stack components (avoid thermal stress development during fabrication, operation, thermal cycling)
- Potentially easy to fabricate
- In simplest form, no viscous/liquid sealing step required

Cons:

- Potential for high leak rates through seal/component interfaces for simple gasket approaches
- Few stable, compliant, hermetic candidate materials
- Load frame required to maintain compressive stress
 - Adds expense, complexity
 - Effect of long-term compressive load on dimensional stability of other stack components?

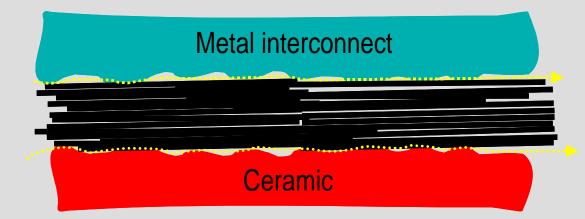
Basis of compressive seal: Mica


Muscovite: KAI₂ (AISi₃O₁₀) (F,OH)₂ Phlogopite: KMg₃(AISi₃O₁₀)(OH)₂

Single crystal sheet

Baffelle

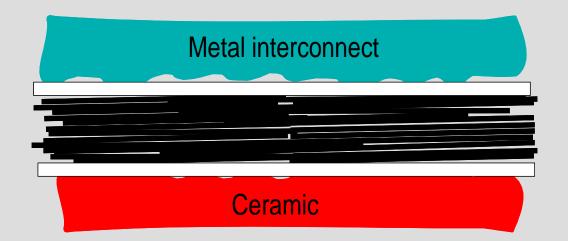
Paper: Discrete flakes with binders



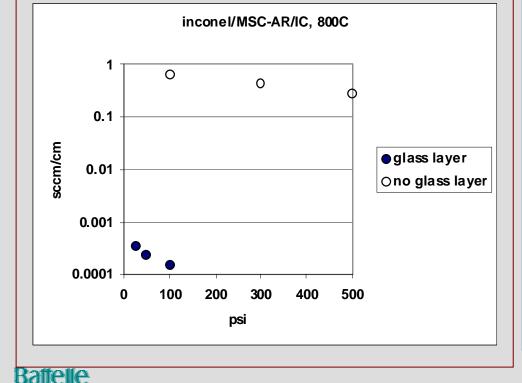
Layered silicate structure

Goal is to develop seals which can tolerate CTE mismatch between adjacent components

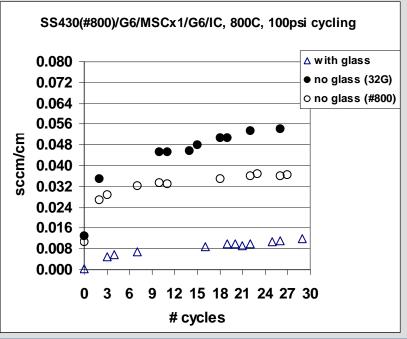
Concept of hybrid compressive seal


Simple mica layer yields excessively high leak rates through interfaces

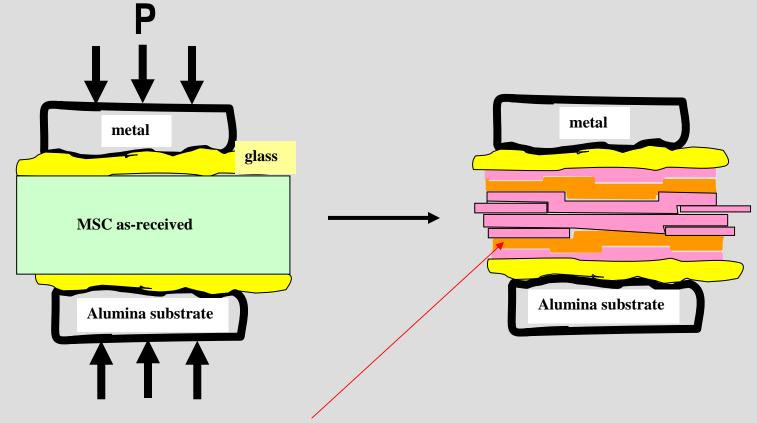
Mica: compliant in 2-D (x-y plane)


Metal/glass interlayer: compliant in 3-D; seals off interfaces

Baffelle

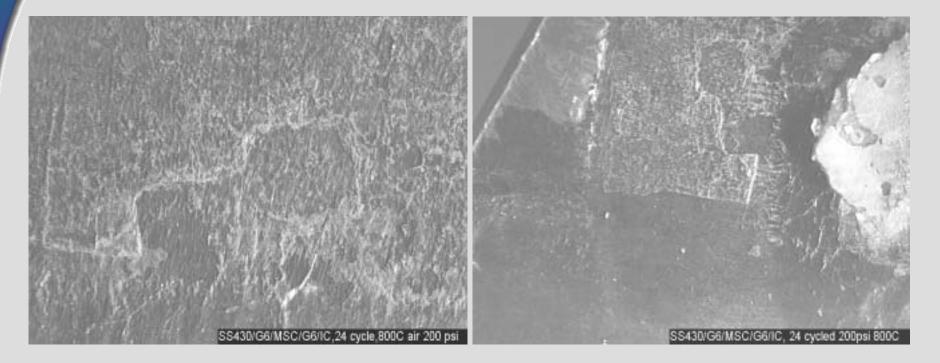


Reduction of leak rate by insertion of glass interlayers


Orders of magnitude reduction in leak rate (vs. plain mica) for single crystal type mica in hybrid design with glass interlayers

Abrupt increase in leak rate during initial cycles – Modest increase in leak rate subsequently

Thermal cycling degradation of hybrid seals



Frictional damage is limited to the first several sub-layers below glass/mica interface; CTE of mica (~6.9 ppm/K) substantially less than CTE of SS or glass (10-13 ppm/K)

Pacific Northwest National Laboratory U.S. Department of Energy 24

Damage to mica during thermal cycling

MSC after 24 thermal cycling to 800°C in air (applied stress:100 psi (SS430/G6/MSC-ar/G6/IC))

Y-S Chou, J.W. Stevenson, and L.A. Chick, "Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells", Journal of Power Sources, <u>112</u>, 130 (2002).

Y-S Chou and J.W. Stevenson, "Thermal cycling and degradation mechanisms of compressive mica-based seals for solid oxide fuel cells," J. Power Sources, <u>112</u>, 376 (2002). Baffelie U.S. Department of Energy 25

Basic Sealing Approaches

- 1) Rigid, bonded seels
 - Room-temperature analog: Epoxy glue
 - •Materials: Glass, glass-ceramic, braze
- 2) Compressive seals
 - Room-temperature analog: Rubber O-ring, gasket
 - -Materials: Micarbased
- 3) Compliant, bonded seals
 - Room-temperature analog: Rubber glue
 - •Materials: ??

Level of effort, maturity of technology

Recap: SOFC Seal Requirements

Functional requirements and materials selection parameters

Vibration and shock resistance (for mobile applications)	
Chemical • Long-term chemical stability under simultaneous oxidizing/w fuel environments • Long-term chemical compatibility with respect to the adjacent sealing surface materials • Resistance to hydrogen embrittlement/corrosion	
Electrical •Non-conductive	
Fabrication • Low cost • High reliability with respect to forming a hermetic seal • Sealing conditions compatible with other stack components Pacific Northwest National	Laborat

Battelle

Recap: SOFC Seal Materials "Issues"

Long term structural stability

- Bulk cracking
- Re-crystallization
- Interface de-bonding
- Reaction products: Layer formation, Porosity formation
- Chemical stability
 - Interface reactions
 - Evaporation
 - Dissolution
 - Hydrogen-assisted corrosion