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SOFC SEALS

Requirements
While fulfilling the above functions, seal materials must remain:

�structurally stable

�chemically compatible with other stack components

�inexpensive

Functions
�SOFC seals prevent mixing of fuel and oxidant within stack

�SOFC seals prevent leaking of fuel and oxidant from stack

�SOFC seals electrically isolate cells in stack

�SOFC seals may provide mechanical bonding of components 
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SOFC SEALS
Notes

�Much of SOFC seal work to date is proprietary (design-specific)

�Limited SOFC seal information in open literature

�Planar designs typically require multiple seals per stack �repeat 
unit� 

�Several different types of seal might be used per repeat unit
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SOFC SEALS

fuel air air fuel

Metal interconnect

Metal frame

Ceramic spacer

Metal endplate/
manifold

S1
S2

S3

S4

Possible Seals include:

S1: Cell to Metal Frame

S2: Metal Frame to Metal 
Interconnect

S3: Frame/Interconnect 
to Spacer (for electrical 
insulation)

S4: Stack to Base 
Manifold Plate

Seal designs and materials will largely depend on the cell and 
stack configurations and contacting surfaces / materials
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SOFC SEALS
Basic Sealing Approaches

� 1) Rigid, bonded seals

�Room-temperature analog: Epoxy glue

�Materials: Glass, glass-ceramic, braze

� 2) Compressive seals 

�Room-temperature analog: Rubber O-ring, gasket

�Materials: Mica-based

� 3) Compliant, bonded seals

�Room-temperature analog: Rubber glue

�Materials: ??

Level of 
effort, 
maturity of 
technology
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SOFC SEALS

Basic Sealing Approaches
� 1) Rigid, bonded seals

�Room-temperature analog: Epoxy glue

�Materials: Glass, glass-ceramic, braze

� 2) Compressive seals 2) Compressive seals 2) Compressive seals 

���RoomRoomRoom---temperature analog: Rubber Otemperature analog: Rubber Otemperature analog: Rubber O---ring, gasketring, gasketring, gasket

���Materials: MicaMaterials: MicaMaterials: Mica---basedbasedbased

��� 3) Compliant, bonded seals3) Compliant, bonded seals3) Compliant, bonded seals

���RoomRoomRoom---temperature analog: Rubber gluetemperature analog: Rubber gluetemperature analog: Rubber glue

���Materials: ??Materials: ??Materials: ??

Level of 
effort, 
maturity of 
technology
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Rigid, Bonded SealsRigid, Bonded SealsRigid, Bonded Seals

Additional Requirements for Rigid, Bonded 
Seals (typically glass, glass-ceramic)
! Thermal expansion match

" Ni/YSZ  12 ppm/K
" 8-YSZ  10 ppm/K
" Doped Ceria 12-13 ppm/K
" Doped Lathanum Gallate 11.5 ppm/K

! Sealing temperature 
" Must be ≤ all previous cell/stack fabrication steps
" Higher than the operational temperature

! Good wetting during sealing
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Glass and Glass-ceramic seals: StatusGlass and GlassGlass and Glass--ceramic seals: Statusceramic seals: Status
“Standard approach” to sealing planar stacks
Successfully used to initially seal stacks; limited success reported in 
terms of thermal cycling and long-term operation 
Pros:
! Viscous/wetting behavior of glass facilitates hermetic sealing
! Inexpensive, easy to fabricate (tape casting, slurry dispensing)
! Properties can be tailored (CTE, Tg, Ts)
! Glass-ceramics (vs. glasses) avoid viscous flow during operation and uncontrolled, 

progressive crystallization during operation 

Cons:
! Brittle behavior (glass-ceramics; glasses below Tg)
! Few systems with appropriate CTE (AE-Al-Si-O) 
! Chemical interactions w/ adjacent components (e.g. metal interconnects)
! Volatilization of seal constituents (SiO2, B2O3, alkali metals)
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P2O5  based glasses
! Low CTE, low strength

B2O3 based glasses
! Volatile, low softening temperatures

SiO2 based glasses
! Best available glass candidate (?)
! Alkaline earth aluminosilicate glasses

" High electrical resistivity
" High thermal expansion (matching other SOFC stack 

components) 
" Rapid crystallization kinetics

Potential Glass SystemsPotential Glass SystemsPotential Glass Systems
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SrO-La2O3-Al2O3-B2O3-SiO2

! High B2O3, very low softening points
" K. Ley et al., J. Mater. Res., 11, 1489 (1996) 

BaO-Al2O3-B2O3-SiO2-As2O3

! Volatilization of B2O3 and As2O3 (pore formation)
" C. Gunther et al., in Solid Oxide Fuel Cells � V, 746 (1997) 

! Crystallization rate adjustable with MgO additions; 
interactions with interconnect alloy (MgCr2O4)

" K. et al., J. Eur. Cer. Soc., 19, 1101 (1999); Proc. 4th European 
SOFC Forum, 899 (2000) 

SOFC Glass Seal StudiesSOFC Glass Seal StudiesSOFC Glass Seal Studies
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AO-Al2O3-B2O3-SiO2 (A = Ba, Ca, Mg)
! Ba: Higher CTE, lower Tg than Ca, Mg 

" N. Lahl et al., in Solid Oxide Fuel Cells � VI, 1057 (1999) 

CaO-Al2O3-SiO2

! Primary crystallization product: Wollastonite
(CaSiO3) 
" Y. Sakaki et al., in Solid Oxide Fuel Cells � V, 652 (1997) 

SOFC Glass Seal StudiesSOFC Glass Seal StudiesSOFC Glass Seal Studies

Note Emphasis on Alkaline Earth 
Aluminosilicate Glasses
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BaO-Al2O3-SiO2 SealsBaOBaO--AlAl22OO33--SiOSiO22 SealsSeals

PNNL Patents:  
US 6,430,966; 
US 6,532,769
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Thermal Expansion of Cell and Stack 
Materials

Thermal Expansion of Cell and Stack Thermal Expansion of Cell and Stack 
MaterialsMaterials
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Glass G18 After CrystallizationGlass G18 After CrystallizationGlass G18 After Crystallization

Anode Electrolyte Seal Metal Interconnect
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Glass/Metal Chemical Interactions

Glass Metal

Ba depletion zone
Reaction zone

Chromia layer

2Cr2O3+4BaO+3O2 = 4BaCrO4
Challenges of glass-sealing metal 
interconnects in SOFC stacks 
include:

•Formation of interfacial compounds 
(e.g., barium chromate for barium 
aluminosilicate sealing glass bonded 
to chromia forming alloys)

•Development of extensive porosity 
in glass near glass/alloy interface
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Glass Sealing ProcedureGlass Sealing ProcedureGlass Sealing Procedure

Glass Seal
! Initial Thickness

" ~750 µm
! Final Thickness

" ~200 µm

Stainless
Steel

Tape Cast
Glass Seal

PEN

Assembled, Load
is applied and
slowly heated to
850°C

After Binder removal
(500°C)  thickness is
reduced by about half.
Glass starts to sinter and
flow

Between 600 -850 °C the
glass becomes viscous and
flows to conform to the
stack parts. 750° -850°
Crystallization begins
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Brazed sealsBrazed sealsBrazed seals

Potential alternative to glass-based seals
Involves use of molten filler metal which flows and fills gap 
between components
Pros:
! Wetting behavior of molten metal facilitates hermetic sealing
! Easy to fabricate 
! Properties can be tailored (CTE, Tm)

Cons:
! Electrically conductive!
! Few systems compatible with sealing under oxidizing conditions

" Noble metal brazes expensive
" Ag relatively inexpensive, but is unstable in dual environment



18

Exposed to fuel/air environment, 100hrs, 
700C

Exposed to air/air environment, 100hrs, 
700C

Air

Air
Air

H2-3%H2OSilver: 
Unstable in 
dual 
atmospheres
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SOFC SEALS

Basic Sealing Approaches
� 1) Rigid, bonded seals1) Rigid, bonded seals1) Rigid, bonded seals

���RoomRoomRoom---temperature analog: Epoxy gluetemperature analog: Epoxy gluetemperature analog: Epoxy glue

���Materials: Glass, glassMaterials: Glass, glassMaterials: Glass, glass---ceramic, brazeceramic, brazeceramic, braze

� 2) Compressive seals 

�Room-temperature analog: Rubber O-ring, gasket

�Materials: Mica-based composites

� 3) Compliant, bonded seals3) Compliant, bonded seals3) Compliant, bonded seals

���RoomRoomRoom---temperature analog: Rubber gluetemperature analog: Rubber gluetemperature analog: Rubber glue

���Materials: ??Materials: ??Materials: ??

Level of 
effort, 
maturity of 
technology
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Compressive sealsCompressive sealsCompressive seals

Very little reported development work compared to rigid seals
Pros:
! May provide mechanical �de-coupling� of adjacent stack components (avoid 

thermal stress development during fabrication, operation, thermal cycling)
! Potentially easy to fabricate 
! In simplest form, no viscous/liquid sealing step required

Cons:
! Potential for high leak rates through seal/component interfaces for simple 

gasket approaches
! Few stable, compliant, hermetic candidate materials
! Load frame required to maintain compressive stress

" Adds expense, complexity
" Effect of long-term compressive load on dimensional stability of other stack 

components?
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Basis of compressive seal: MicaBasis of compressive seal: MicaBasis of compressive seal: Mica
■ Muscovite: KAl2 (AlSi3O10) (F,OH)2

■ Phlogopite: KMg3(AlSi3O10)(OH)2

Single crystal sheet

Paper: Discrete flakes with binders
Layered silicate structure

Goal is to develop seals which can 
tolerate CTE mismatch between 
adjacent components
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Concept of hybrid compressive sealConcept of hybrid compressive sealConcept of hybrid compressive seal

Mica: compliant in 
2-D (x-y plane)

Metal/glass 
interlayer: compliant 
in 3-D; seals off 
interfaces

Simple mica layer yields 
excessively high leak 
rates through interfaces

Metal interconnect

Ceramic

Metal interconnect

Ceramic

Metal interconnect

Ceramic

Metal interconnect

Ceramic
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Reduction of leak rate by insertion of glass 
interlayers

Reduction of leak rate by insertion of glass Reduction of leak rate by insertion of glass 
interlayersinterlayers
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Thermal cycling degradation of hybrid sealsThermal cycling degradation of hybrid sealsThermal cycling degradation of hybrid seals

metal

Alumina substrate

metal

Alumina substrate

MSC as-received

glass

P

Frictional damage is limited to the first several sub-layers below glass/mica 
interface; CTE of mica (~6.9 ppm/K) substantially less than CTE of SS or glass (10-13
ppm/K)
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Damage to mica during thermal cyclingDamage to mica during thermal cyclingDamage to mica during thermal cycling
MSC after 24 thermal cycling to 800oC in air (applied stress:100 psi (SS430/G6/MSC-ar/G6/IC))

Y-S Chou and J.W. Stevenson, �Thermal cycling and degradation mechanisms of compressive mica-based 
seals for solid oxide fuel cells,� J. Power Sources, 112, 376 (2002).

Y-S Chou, J.W. Stevenson, and L.A. Chick,  �Ultra-low leak rate of hybrid compressive mica seals for 
solid oxide fuel cells�, Journal of Power Sources, 112, 130 (2002).
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SOFC SEALS
Basic Sealing Approaches

� 1) Rigid, bonded seals1) Rigid, bonded seals1) Rigid, bonded seals

���RoomRoomRoom---temperature analog: Epoxy gluetemperature analog: Epoxy gluetemperature analog: Epoxy glue

���Materials: Glass, glassMaterials: Glass, glassMaterials: Glass, glass---ceramic, brazeceramic, brazeceramic, braze

��� 2) Compressive seals 2) Compressive seals 2) Compressive seals 

���RoomRoomRoom---temperature analog: Rubber Otemperature analog: Rubber Otemperature analog: Rubber O---ring, gasketring, gasketring, gasket

���Materials: MicaMaterials: MicaMaterials: Mica---basedbasedbased

� 3) Compliant, bonded seals

�Room-temperature analog: Rubber glue

�Materials: ??

Level of 
effort, 
maturity of 
technology
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Recap: SOFC Seal RequirementsRecap: SOFC Seal RequirementsRecap: SOFC Seal Requirements

∙Low cost
∙High reliability with respect to forming a hermetic seal
∙Sealing conditions compatible with other stack components

Fabrication

∙Non-conductiveElectrical

∙Long-term chemical stability under simultaneous oxidizing/wet 
fuel environments
∙Long-term chemical compatibility with respect to the adjacent 
sealing surface materials
∙Resistance to hydrogen embrittlement/corrosion

Chemical

∙Hermetic (or near hermetic)
∙Minimal CTE mismatch (or ability to yield or deform to mitigate 
CTE mismatch stresses) 
∙Acceptable bonding strength (or deformation under compressive 
loading)
∙Thermal cycle stability
∙Vibration and shock resistance (for mobile applications)

Mechanical

Functional requirements and materials selection parameters
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Recap: SOFC Seal Materials “Issues”Recap: SOFC Seal Materials “Issues”Recap: SOFC Seal Materials “Issues”

! Long term structural stability
" Bulk cracking
" Re-crystallization
" Interface de-bonding
" Reaction products: Layer formation, Porosity 

formation
! Chemical stability

" Interface reactions
" Evaporation
" Dissolution
" Hydrogen-assisted corrosion


